首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21883篇
  免费   3932篇
  国内免费   2040篇
电工技术   3012篇
技术理论   1篇
综合类   2007篇
化学工业   3373篇
金属工艺   615篇
机械仪表   1683篇
建筑科学   437篇
矿业工程   297篇
能源动力   934篇
轻工业   873篇
水利工程   250篇
石油天然气   903篇
武器工业   419篇
无线电   3262篇
一般工业技术   3266篇
冶金工业   414篇
原子能技术   392篇
自动化技术   5717篇
  2024年   72篇
  2023年   526篇
  2022年   836篇
  2021年   909篇
  2020年   1107篇
  2019年   971篇
  2018年   979篇
  2017年   1152篇
  2016年   1257篇
  2015年   1280篇
  2014年   1552篇
  2013年   1698篇
  2012年   1735篇
  2011年   1834篇
  2010年   1200篇
  2009年   1283篇
  2008年   1153篇
  2007年   1310篇
  2006年   1114篇
  2005年   871篇
  2004年   747篇
  2003年   689篇
  2002年   537篇
  2001年   423篇
  2000年   431篇
  1999年   294篇
  1998年   274篇
  1997年   256篇
  1996年   234篇
  1995年   180篇
  1994年   181篇
  1993年   113篇
  1992年   118篇
  1991年   111篇
  1990年   79篇
  1989年   58篇
  1988年   39篇
  1987年   42篇
  1986年   30篇
  1985年   35篇
  1984年   40篇
  1983年   30篇
  1982年   41篇
  1981年   11篇
  1980年   7篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
91.
Electron paramagnetic resonance (EPR) spectroscopy, also known as electron spin resonance spectroscopy (ESR), utilizes absorption of microwave radiation by unpaired electrons in a magnetic field. The interaction between the unpaired electron(s) and nearby magnetic nuclei helps identify paramagnetic species and can provide information about the motion of the molecule and the local polarity, pH, viscosity, concentration, and accessibility to other paramagnetic species. This mini-review discusses the fundamental underpinnings of EPR needed to correctly interpret EPR spectra. We describe various types of EPR spectra encountered by chemical engineers, and use application examples drawn from the chemical engineering literature to illustrate the information available from the technique. Few chemical engineering departments or even chemistry departments have EPR instruments, which contributes to the significant barrier that prevents this being adopted as a routine measurement technique. However, in 2016 and 2017, Web of Science indexed 7000 articles that applied EPR spectroscopy. A bibliometric map categorized the keywords in four categories based on co-occurrences: magnetic properties, films, and luminescence; crystal structure, complexes, and ligands; nanoparticles, oxidation, and degradation; and, systems, radicals, and H2 O2 .  相似文献   
92.
采用高速粒子图像测速技术(particle image velocimetry,PIV)测量了一台直喷式光学发动机的缸内流场,利用动态模态分解(dynamic mode decomposition,DMD)算法,提取了发动机从进气冲程早期到压缩冲程后期中出现的多尺度涡团结构,量化了涡团的比动能在整个冲程阶段的衰减程度。结果表明:从进气冲程早期开始,缸内流场主要由低阶DMD模态表现的大尺度流场结构和高阶DMD模态表现的小尺度涡团结构组成;DMD模态的比动能变化可清楚地反映从大尺度流场结构到小尺度涡团的能量级联和耗散过程。同时还发现,与压缩冲程相比,进气冲程期间的流场可形成更多小尺度的涡团结构,并表现出更快的能量衰减特征,且该阶段流场能量衰减现象对发动机转速更加敏感。  相似文献   
93.
Catalytic methane decomposition (CMD) was studied by employing biochar and activated char of biosolids’ origin under different reaction temperatures and methane concentrations. Higher reaction temperatures and lower inlet methane concentrations were found to be favourable for achieving higher methane conversion. A maximum initial methane conversion of 71.0 ± 2.5 and 65.2 ± 2.3% was observed for activated char and biochar, respectively at 900 °C and for 10% CH4 in N2 within the first 0.5 h of experiment. Active sites from oxygen containing carboxylic acid functional groups and smaller pore volume and pore diameter were attributed to assist in higher initial methane conversion for biochar and activated char respectively. However, rapid blockages of active sites and surfaces of biochar and activated char due to carbon formation have caused a rapid decline in methane conversion values in the first 0.5 h. Later on, crystalline nature of the newly formed carbon deposits due to their higher catalytic activity have stabilised methane conversion values for an extended experimental period of 6 h for both biochar and activated char. The final conversion values at the end of 6 h experiment with biochar and activated char at 900 °C and for 10% CH4 in N2, were found to be 40 ± 1.9 and 35 ± 1.6% respectively. Analysing carbon deposits in detail revealed that carbon nanofiber type structures were observed at 700 °C while nanospheres of carbon were found at 900 °C.  相似文献   
94.
Thermocatalytic decomposition of methane is proposed to be an economical and green method to produce COx-free hydrogen and carbon nanomaterials. In this work, the catalytic performance of Ni–Mn–Ru/Al2O3 catalyst under different reaction parameters (such as, pre-reduction temperature, reaction temperature, space velocity, etc.) were investigated to obtain optimum reaction conditions. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, inductively coupled plasma optical emission spectrometer and hydrogen temperature programmed reduction. For the 60 wt% Ni-5 wt% Mn-10 wt% Ru/Al2O3 catalyst using Ru(NO)(NO3)x(OH)y(x + y = 3) as Ru precursor, the methane conversion rate obtained is high as 93.76% under optimum reaction conditions (reduction at 700 °C for 1 h, reaction at 750 °C, GSHV = 36,000 mL/gcat h). Carbon nanomaterials formed during the process of methane thermocatalytic decomposition were characterized by scanning electron microscopy, thermal gravimetric analyzer and Raman spectroscopy. Carbon nanofibers were formed over all the Ni–Mn–Ru/Al2O3 catalysts.  相似文献   
95.
Thermal degradation of butadiene-based model elastomers was analyzed via a novel reactive molecular dynamics simulation (ReaxFF) method. The molecular simulation was carried out on 40 monomer units connected together. Degradation pathways of both homopolymer and copolymer of butadiene-based model elastomers such as polybutadiene (BR) and poly (styrene-co-butadiene) (SBR) were studied. The evolution of different fragmented products was examined as a function of time and heating rate. The formation mechanisms of different degraded fragments were visualized via the simulation method. The major decomposition products obtained from these model compounds were the monomers and comonomers. Pyrolysis gas chromatography–mass spectrometry (py-GC–MS) analysis was performed on the commercial samples of BR and SBR to verify the simulation results. The results obtained from the reactive simulation were very consistent with the experimental results. The activation energy required for the thermal decomposition of butadiene-based model elastomers were calculated both from the ReaxFF simulation and thermogravimetric analysis (TGA). The results were also in good agreement. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48592.  相似文献   
96.
Hydrogen addition effectively reduces the fuel consumption of spark ignition engines. We propose a new on-board reformer that produces hydrogen at high concentrations and enables multi-mode operations. For the proposed reformer, we employ a catalytic fuel decomposition reaction via a commercial NiO–CaAl2O4 catalyst. We explore the physical and chemical aspects of the reforming process using a fixed bed micro-reactor operating at temperatures of 550–700 °C. During reduction, methane is decomposed to form hydrogen and carbon. Carbon formation is critical to hydrogen production, and free space for carbon growth is essential at low temperatures (≤600 °C). We define a new accumulated conversion ratio that quantitatively measures highly transient catalytic decomposition. The free space of the coated monolith clearly aided low-temperature decomposition with negligible pressure drop. The coated substrate is therefore suitable for on-board applications considering that our reformer concept also utilizes the catalytic fuel decomposition reaction.  相似文献   
97.
Photocatalytic decomposition of organic materials-contained aqueous solution is assessed using a plasma discharged into the liquid directly. The correlation of H2 generation and optical emission spectroscopy is discussed in terms of photocatalytic H2 production using plasma and photocatalysts. Variations of the active species are evaluated according to the conditions of the plasma in the liquid phase. The optical emission spectra vary according to the plasma discharging conditions in the liquid phase. The intensities of the OH· peaks at 309 nm increase with the addition of ethanol or acetaldehyde in water. The highest intensities and rate of H2 evolution are observed at a 10% acetaldehyde concentration in the aqueous solution. The rates of H2 evolution in the ethanol or acetaldehyde solution correspond to the concentration of OH· in the solution. The photocatalytic reaction using liquid plasma generates hydrogen at the same time as the decomposition of the organic chemicals. The rate of hydrogen evolution in aqueous solutions containing the organic chemicals is higher than that in pure water. This is because hydrogen is further generated due to hydrogen generation by photolysis of the organic chemicals. CaTiO3 perovskite photocatalyst shows better photocatalytic activity than TiO2. Ni loading on the photocatalyst lead to an increase in H2 production.  相似文献   
98.
We report the application of plasmonic Bi nanoparticles supported rGO/BiVO4 anode for photoelectrochemical (PEC) water splitting. Nearly, 2.5 times higher activity was observed for Bi-rGO/BiVO4 composite than pristine BiVO4. Typical results indicated that Bi-rGO/BiVO4 exhibits the highest current density of 6.05 mA/cm2 at 1.23 V, whereas Bi–BiVO4 showed the current density of only 3.56 mA/cm2. This enhancement in PEC activity on introduction of Bi-rGO is due to the surface plasmonic behavior of BiNPs, which improves the absorption of radiation thereby reduces the charge recombination. Further, the composite electrode showed good solar to hydrogen conversion efficiency, appreciable incident photon-to-current efficiency and low charge transfer resistance. Hence, Bi-rGO/BiVO4 provides an opportunity to realize PEC water splitting.  相似文献   
99.
铝空气电池废电解液生产超细氢氧化铝工艺条件研究   总被引:1,自引:0,他引:1  
以铝空气电池的废电解液为原料, 采用种分法生产氢氧化铝。结果表明, 当种分时间为24 h、晶种系数为2%~4%时, 可生产出超细氢氧化铝, 且粒径分布宽度窄, 阻燃性能优良, 达到HG/T4530-2013氢氧化铝阻燃剂ATH-1一等品的要求。  相似文献   
100.
Three dimensional TiO2–Au cross-nanoporous structure (3D TiO2–Au CNS) as an efficient photoelectrocatalytic system was fabricated using superaligned carbon nanotube films as etching masks and electron-beam evaporation. The 3D TiO2–Au CNS exhibited a broad absorption band in the visible region, and the incident photon-to-current conversion efficiency of 3D TiO2–Au CNS/Ti electrode was 3–4 times higher than that of pure TiO2 electrode. The photocurrent density of the 3D TiO2–Au CNS device was 0.079 mA cm−2 at 0 V vs. Ag/AgCl with a solar irradiance of 100 mW cm−2. This developed preparation method was simple, of high flexibility and can be adopted for mass production due to its low cost and good compatibility with other processing technologies. The 3D TiO2–Au CNS and its preparation method have important value in design of photoelectrocatalytic system for research and practical applications, which may have a potential utility in photocatalytic and other photoelectrocatalytic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号